• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le App
    • Skill
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

ARZELÀ, Cesare

di Nicola Virgopia - Dizionario Biografico degli Italiani - Volume 4 (1962)
  • Condividi

ARZELÀ, Cesare

Nicola Virgopia

Nacque a S. Stefano di Magra (La Spezia) il 6 marzo 1847, da modesta famiglia. Compì i primi studi al ginnasio di Sarzana e poi, come borsista, al liceo di Pisa. Allievo interno della scuola normale superiore di Pisa, si laureò in matematica nel 1869. Dopo la laurea, a causa delle ristrettezze economiche, dovette rinunciare ad una borsa di perfezionamento all'estero e iniziò ad insegnare nei licei di Macerata e poi di Savona. Nel 1871 ritornò a Pisa presso la Scuola normale per frequentare i corsi di E. Betti e U. Dini, quest'ultimo sulla teoria delle funzioni di variabile reale, teoria sulla quale si fonderà in seguito l'attività dell'Arzelà. Nel 1873 riprese l'insegnamento liceale e nel 1875 passò all'isfflhto tecnico provinciale di Firenze, dove rimase sino al 1878, anno in cui vinse la cattedra di algebra all'università di Palermo; nel 1880 passò definitivamente all'università di Bologna alla cattedra di calcolo infinitesimale, ove pure, dal 1884 in poi, ebbe l'incarico di analisi superiore.

L'A. morì a S. Stefano di Magra il 15 Marzo 1912.

L'attività scientifica dell'A. è piuttosto vasta e ricca di importanti risultati nel campo dell'analisi. Nei primi lavori riguardanti la teoria algebrica della eliminazione e lo studio sulla deformazione di un elissoide elastico, col quale viene risolto un importante problema di fisica-matematica collegato con lo studio delle deformazioni elastiche della Terra, si rivela il forte ingegno dell'Arzelà. Durante l'insegnamento a Palermo, le sue interessanti ricerche sui massimi e minimi delle funzioni algebriche segnarono il passaggio dell'A. dal primitivo indirizzo algebrico a quello nuovo sulla teoria delle funzioni e delle serie di funzioni. L'idea principale che domina tali lavori è quella di considerare una serie di funzioni di una variabile indipendente come caso particolare di una funzione di due variabili indipendenti e di interpretare la continuità della serie come la continuità di detta funzione rispetto ad una delle due variabili; vengono così approfonditi gli studi sulla continuità assoluta e sulla continuità di direzione delle funzioni di due variabili indipendenti. Ripresi i lavori del Dini e dello Hein sulla continuità delle serie di funzioni continue, l'A. dirnostra, con ipotesi meno restrittive e molto più generali, il suo famoso teorema: "Condizione necessaria e sufficiente affinché una serie di funzioni continue abbia per somma una funzione continua, è che la serie sia dotata della convergenza uniforme a tratti o (in termini moderni) della convergenza quasi uniforme". L'importanza di tale teorema è dovuta al fatto che tutti i problemi che dipendono analiticamente dalla ricerca di una o più funzioni, si risolvono per mezzo di serie di funzioni e che una delle prime proprietà che occorre fissare è la continuità o la non continuità nel campo di variabilità delle funzioni cercate.

Altri lavori interessanti riguardano il problema della integrabilità riemanniana delle serie di funzioni; il teorema relativo arricchisce l'analisi di un prezioso risultato. Sebbene i risultati dell'A. non richiamassero subito l'attenzione degli analisti, pochi anni dopo vennero altamente considerati e furono raccolti dall'A. in due grosse memorie dell'Accademia delle scienze di Bologna (1899 e 1900), ove egli ne diede un'esposizione sistematica e corredata da opportuni esempi. Le applicazioni degli studi dell'A. furono numerose; basta ricordare il teorema sulla integrazione termine a termine di una serie, il problema della sviluppabilità in serie di Fourier, lo studio degli integrali tra limiti infiniti di funzioni contenenti un parametro, quello sull'integrazione per sostituzione, quello sull'inversione delle funzioni, ecc.

Un altro gruppo di ricerche notevoli dell'A. nasce dall'introduzione del concetto di funzione di linea, che già prima era stato studiato da V. Volterra. Il Volterra si era limitato a stabilire quelle proprietà funzionali, che gli servivano nelle applicazioni alla teoria delle funzioni di due variabili complesse e alla teoria delle equazioni integrali; l'A., riprendendo gli studi del Volterra, dal punto di vista funzionale, estese moltissime proprietà delle funzioni ordinarie, e trovò il legame tra la teoria delle funzioni di linea e la dimostrazione riemanniana del principio di DirichIet. Sempre facendo uso della teoria delle funzioni di linea, l'A. dette una nuova dimostrazione del secondo teorema della media per gli integrali doppi. Tale teorema, che egli stesso aveva stabilito per la prima volta, acquista grandissima importanza nella teoria degli sviluppi in serie di Fourier. Altrettanto successo ebbero i risultati dell'A., sulle varietà di funzioni, sia per le loro applicazioni alla teoria dei calcolo delle variazioni, sia in quanto gli permisero di semplificare la dimostrazione di Cauchy-Lipschitz del teorema di esistenza di integrali per equazioni differenziali ordinarie del i orcline, e, seguendo una via analoga, per equazioni differenziali alle derivate parziali del 1 ordine.

L'opera scientifica dell'A. presenta particolari difficoltà, poiché in essa manca l'uso di artifici analitici: infatti quasi sempre i suoi lavori sono rivolti a completare risultati, a togliere le più sottili imprecisioni, ad ampliare o generalizzare teorie. I meriti di m!estro e di scienziato gli furono riconosciuti con molteplici attestazioni di stima: fu membro della Società di scienze naturali ed economiche di Palermo, della R. Accademia delle scienze di Bologna, socio corrispondente della R. Accademia dei Lincei, della Società matematica di Char´kov, uno dei XL della Società italiana delle scienze, premio reale per la matematica (1907).

Opere: Deformazione di un ellissoide elastico omogeneo isotropo,in Giorn. di matematiche,Napoli 1874, XII, pp. 339-347; Sopra la teoria dell'eliminazione algebrica, ibid.,Napoli 1877, XV, pp. 62-85, 154-177; Una osservazione intorno alle serie di funzioni, in Rendic. d. Accad. d. scienze di Bologna, 1883, pp. 142-169; Sui prodotti infiniti,in Mem. d. Accad. d. scienze di Bologna, s. 4, IV, (1883), pp. 419-439; Intorno alla continuità della somma di infinite funzioni continue, in Rendic. d. Accad. d. scienze di Bologna,1884, pp. 79-84; Un teorema intorno alle serie di funzioni,in Rendic. d. Accademia dei Lincei,s. 4, I (1884-85), pp. 262-267; Sull'integrabilità di una serie di funzioni, ibid.,pp. 321-326; Sui prodotti infiniti, in Rendic. d. Accad. delle scienze di Bologna,1886, pp., 92-100; Funzioni di linea,in Rendic. d. Accademia dei Lincei, s. 4, V (1889), I semestre, pp. 342-348; Sugli integrali doppi,in Mem. d. Accad. delle scienze di Bologna,s. 5, t. II (1891), pp. 133-147; Sulle serie doppie trigonometriche, ibid., s. 5, IV (1894), pp. 373-382; Sull'esistenza degli integrali nelle equazioni differenziali ordinarie, ibid., s. 5, VI (1896) pp. 131-140; Sull'integrazione per serie, in Rendic. d. Accad. dei Lincei,s. 5, VI (1897), II semestre, pp. 290-292; Sul principio di Dirichlet,in Rendic. d. Accad. d. scienze di Bologna,n. s., 1 (1897), pp. 71-84; Sulle serie di funzioni,in Mem. d. Accad. d. scienze di Bologna, s. 5, VIII (1899), parte I, pp. 131-186; IX (1900) parte 2, pp. 701-744; Sul secondo teorema della media per gli integrali doppi, ibid.,s. 5, X (1902), pp. 99-109; Sulle serie di funzioni variabili reali, in Rendic. d. Accad. delle scienze di Bologna, n. s., VII (1903), pp. 22-32; Sulle serio di funzioni analitiche,ibid., pp. 33-42; Sull'inversione di un sistema di funzioni,ibid., pp. 182-201; Sulla serie di funzioni ugualmente oscillanti, ibid.,n. s., VIII (1904), pp. 143-154; Sulle funzioni di due variabili a variazione limitata, ibid., n. s., IX (1905), pp. 100-107; Esistenza degli integrali nelle equazioni a derivate parziali, in Mem. d. Accad. d. scienze di Bologna, s.6, t. 111 (1906), pp. 117-141; Su alcune questioni di calcolo funzionale, ibid., s.6, t. VII (1910), pp. 297-315; Variazioni deboli e forti delle funzioni, in Rendic. d. Accad. d. scienze di Bologna, n. s., XV (1911), pp. 56-59; Trattato di algebra elementare (tre edizioni), Firenze 1882; Lezioni di calcolo infinitesimale,vol. I,ibid. 1901.

Bibl.: G. Lauricella, Commemorazione di C.A., in Atti d. R. Accad. d. Lincei,Cl.d. scienze fisiche, s. 5, vol. XXI (1912), 2, pp. 879-884; F. Sibariani, Commemoraz. di C.A., in Periodico di matematica,XXVIII(1913), pp. 45-48.

Vedi anche
Ulisse Dini Matematico italiano (Pisa 1845 - ivi 1918). Alunno della Scuola normale superiore di Pisa (1860-64), vi ebbe maestri O. Mossotti ed E. Betti. Prof. prima di geodesia e poi di analisi nell'univ. di Pisa (1865-1917) e direttore della Scuola normale (1874-76 e 1900-18). Socio nazionale dei Lincei (1882) ... La Spezia Comune della Liguria orientale (51,7 km2 con 94.634 ab. nel 2008, detti Spezzini), capoluogo di provincia. È situata in posizione protetta nel golfo omonimo, orientato da NO a SE, lungo il quale corrono due dorsali montuose. Una dorsale collinare, che si spinge fino al mare, divide la pianura alluvionale ... Savona Comune della Liguria (65,6 km2 con 61.916 ab. nel 2008), capoluogo di provincia. Sorge sulla Riviera di Ponente, nella piccola piana alluvionale formata dal torrente Letimbro, in prossimità della sua foce. Nel 20° sec. l’abitato si è sviluppato verso i retrostanti rilievi e lungo il litorale, sia a N ... Palermo Comune della Sicilia (158,9 km2 con 663.173 ab. nel 2008), capoluogo di provincia e di regione, situato sulla costa nord-occidentale dell’isola, all’interno dell’omonimo golfo; si estende nella breve pianura detta Conca d’Oro, dominata a N dal Monte Pellegrino. ● Il nucleo originario di Palermo sorse ...
Categorie
  • BIOGRAFIE in Matematica
Tag
  • EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI
  • EQUAZIONI DIFFERENZIALI ORDINARIE
  • SCUOLA NORMALE SUPERIORE DI PISA
  • CALCOLO DELLE VARIAZIONI
  • CALCOLO INFINITESIMALE
Altri risultati per ARZELÀ, Cesare
  • Arzelà, Cesare
    Enciclopedia on line
    Matematico italiano (Santo Stefano di Magra, Spezia, 1847 - ivi 1912). Insegnò algebra all'univ. di Palermo (1878-80) e calcolo infinitesimale in quella di Bologna (dal 1880). All'A. si devono risultati e concetti di grande importanza nella teoria delle funzioni (condizione necessaria e sufficiente ...
  • Arzelà Cesare
    Dizionario delle Scienze Fisiche (1996)
    Arzela Cesare Arzelà Cesare [STF] (Santo Stefano di Magra 1847 - ivi 1912) Prof. di algebra nell'univ. di Palermo (1878) e poi di calcolo infinitesimale in quella di Bologna (1880). ◆ [ANM] Teorema di Ascoli-A.: v. funzionale, analisi: II 770 b.
  • ARZELÀ, Cesare
    Enciclopedia Italiana (1929)
    ARZELÀ, Cesare Nato a S. Stefano di Magra (La Spezia) il 6 marzo 1847, morto ivi il 15 marzo 1912, fu professore d'algebra all'università di Palermo dal 1878 al 1880 e di calcolo differenziale e integrale all'università di Bologna dal 1880 alla sua morte. Discepolo del Dini, si mantenne fedele a quell'indirizzo ...
Vocabolario
Céṡare
Cesare Céṡare s. m. – 1. Titolo distintivo degli imperatori romani, derivato dal cognome del generale, triumviro e dittatore Gaio Giulio Cesare (100 o 102 - 44 a. C.). 2. Nell’Impero bizantino, in origine titolo dell’imperatore associato...
cèṡio¹
cesio1 cèṡio1 agg. [dal lat. caesius «grigio azzurro, verdastro»], letter. – Azzurro chiaro, celeste, detto per lo più degli occhi: gli occhi tuoi cesii (D’Annunzio); come s. m., il c., il colore cesio.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le App
    • Skill
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali