• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le App
    • Skill
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

spazio dei moduli

di Fabrizio Andreatta - Enciclopedia della Scienza e della Tecnica (2008)
  • Condividi

spazio dei moduli

Fabrizio Andreatta

In geometria algebrica gli spazi di moduli sono spazi che parametrizzano classi di isomorfismo di oggetti di tipo fissato e appaiono solitamente nella classificazione di tali oggetti. Il termine ‘moduli’ sta appunto per parametri. Esempi tipici sono gli spazi di moduli di curve di genere g maggiore o uguale a 2, di varietà abeliane, di superfici K3, di fibrati stabili su una curva, di superfici di tipo generale etc. Limitiamoci per semplicità a varietà su un campo k algebricamente chiuso. In ciascuno degli esempi precedenti è associato un problema di moduli o, più precisamente, un funtore F che associa a una varietà V su k le classi di isomorfismo di famiglie di oggetti, del tipo che vogliamo classificare, parametrizzate da V. Diremo che il problema di moduli in questione è rappresentabile o ammette uno spazio dei moduli fine se esiste una varietà M e una famiglia S sopra M tale che ogni altra, parametrizzata da una varietà V, si ottiene da S per cambiamento di base tramite un unico morfismo V→M. Per es., il funtore che associa a V le classi di isomorfismo di rette nello spazio affine n+1-dimensionale su V ammette lo spazio proiettivo ℙn come spazio dei moduli fine. Purtroppo nelle situazioni sopra menzionate gli spazi di moduli fini non esistono o meglio esistono solo aggiungendo strutture supplementari. Per es., il problema dei moduli delle curve di genere g e di grado 6(g−1) in ℙN(ℂ), con N=5g−4, 3-canonicamente immerse è rappresentabile. David B. Mumford ha introdotto dunque una nozione più debole che ovvia a tale difficoltà. Diremo che il problema di moduli in oggetto ammette una varietà M come spazio dei moduli grezzo se ogni classe di isomorfismo di una famiglia di oggetti parametrizzata da una varietà V produce un morfismo V→M cosicché M è massimale con tale proprietà e tale corrispondenza induce una biezione da F(k) ai k-punti di M. Segue che M è unico. Osserviamo che non richiediamo che M sia provvisto di una famiglia universale.

→ Geometria algebrica

Vedi anche
spazio fibrato In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione agli spazi vettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione ... isomorfismo In matematica, corrispondenza biunivoca tra due insiemi dotati di ‘strutture’, la quale conservi le strutture stesse. Le strutture sono di tre tipi: d’ordine, algebriche e topologiche, e si hanno perciò tre diversi tipi di isomorfismi. isomorfismo tra insiemi dotati di strutture d’ordine (isomorfismo ... varietà varietà agraria Entità comprese in una specie (dette anche spesso razze). Per la nomenclatura delle piante coltivate il Congresso internazionale di orticoltura del 1952 stabilì alcune norme e propose il termine cultivar, che si riferisce a un’entità subordinata alla specie; con ciò fu abolito per ... retta Ente geometrico fondamentale, in genere assunto come primitivo nelle trattazioni assiomatiche. astronomia retta d’altezza Proiezione di un tratto del cerchio d’altezza (➔ cerchio) sopra una carta di Mercatore. Le retta d’altezza sono utilizzate per le determinazioni del punto. economia retta del ...
Categorie
  • GEOMETRIA in Matematica
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
mòdulo
modulo mòdulo s. m. [dal lat. modŭlus, dim. di modus «misura»]. – In genere, misura, forma, esemplare, che si assume come modello a cui attenersi, o come elemento fondamentale secondo il quale determinare o proporzionare le misure di un...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le App
    • Skill
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali